NDIA 46th Annual Fuze Conference Ordnance Fuzing/Safety & Arming Programs Overview

John Hendershot

(Code 4420: Phone 301-744-1934 or e-mail hendershotje@ih.navy.mil)

Fuze Safe & Arm Branch Manager

OUTLINE

FY01-02

- **♦** Development Programs
- **♦** Technology Demonstrations
- **♦** Technology Programs & Spin-offs
- **♦** Technology & Infrastructure Investments

SABRE MOD 2 Fuze/S&A Development

Fuze/S&A for Shallow-water Assault Breaching (SABRE) System

SABRE MOD 2 Fuze/S&A Development

FY01

- **♦** Contractor Development Contract Awarded (4/01) to Ensign Bickford Aerospace & Defense
 - ♦ Fire-and-Forget Fuze/Safety and Arming System
 - **♦** Requires .982 Reliability
 - ♦ Sterilize within 60 sec after launch
 - **♦** Sense in-water environment as condition for arming
- **♦** Conducted lab & flight tests of prototypes
- **♦ SABRE & DET Development Canceled (9/01)**

NSFS ERGM M80 PIP (Product Improvement Program)

Naval Surface Fire Support of Ground Troops

ERGM WARHEAD STATUS:

- M80 Submunition Payload Put on Hold in Favor of Unitary Payload - 28 January 2002
- ♦ M80 PIP EX 433 Proximity Fuze Design Goals Met
 - Technical Data Package Available ~ 30 September 2002

NSFS ERGM M80 PIP

EX 433 Proximity Fuze System Development Team

Fuze/Battery Expertise Drawn From:

Army / Navy Labs and Industry

Hittite Microwave Corp

ive Corp Integrated Circuit Systems

Amkor Technology

NSFS ERGM M80 PIP EX 433 Mod 0 Proximity Fuze

PROGRAM ACHIEVEMENTS:

- Successful New Reserve Battery Development
 - Gun Setback Activated

 Successful Ultra Low Power Miniaturization of M734A1 Proximity RF Transceiver

M734A1 Transceiver

EX 433 MMIC

NSFS ERGM M80 PIP EX 433 Mod 0 Proximity Fuze

PROGRAM ACHIEVEMENTS: (cont'd)

 Developed Functional Narrow Band Monopole Antenna

Antenna Exposed

Antenna Embedded

- Successfully Developed Low Power Signal Processor IC
 - Chip Scale Packaging (CSP)

Ceramic fcCSP Diagram

NSFS ERGM M80 PIP EX 433 Mod 0 Proximity Fuze

PROGRAM ACHIEVEMENTS: (cont'd)

♦ One-for-One Slide Assembly Goal of an Add-On Proximity Fuze Achieved and Produced

Replaced M234 Slide Assembly

EX 433 Molded Slide Assembly

EX 433 Proximity Fuze

- **♦** Required HOB Performance Envelope Demonstrated
 - Passed Lab Simulated ERGM Environments
- Navy Technical Data Package Developed
 - Currently Being Updated

Reduced Power Active EM Fuze Underwater Torpedo Demonstration

Proof-of-Principle

- 85% Reduction of Input Power predicted by modeling
- Multiple Transmitter Designs
- Suitability of EM Fuzing for Small Diameter torpedoes

Successful Torpedo Sea Run Tests Conducted 7/01

- 6 out of 6 Target Detections
- Dynamic data (in water) indicates 66% power reductions

 Non optimized bardware

➤ Non optimized hardware

EM Fuzed Torpedo Shell Section

Demonstration Results Brief scheduled during Session V-B,

MEMS-Based F/S&A Technology Development & Application at IHDIV

OBJECTIVES:

- Apply Demonstrated MEMS Based F/S&A Technology to Undersea Weapon Systems
- Develop and Integrate MEMS and Energetics Technologies for Low Cost F/S&A Systems & Applications i.e. Sub Munitions, Self Destruct etc.

APPROACH:

- Leverage ONR/DARPA MEMS Infrastructure Investments:
 - MEMS Design, Analysis, & Packaging
 - MEMS Explosives Cleanroom and equipment
- ◆Capitalize on the MEMS Industrial Base
 - Commercial (COTS) Sensors & Devices
 - Commercial Foundries for S&A Chip Fabrication
- Demonstrate MEMS F/S&A Safety and Reliability
 - Assure Weapon Safety with Miniaturized Modular Architecture

MEMS F/S&A Indian Head Collaborations

Current Partnerships:

JDS Uniphase:

- 💜 JDS Uniphase
- MEMS and slapper foundry processing
- Honeywell F&MT
 - Miniature Fireset and Optical Interrupt
- Applied Physics Lab JHU
 - Packaging and processing
- University of Maryland
 - Optics and packaging R&D
- Tanner Laboratories
 - Energetics and MEMS Development Tanner
 - CRADA established

- Applied Research Lab @ Penn State PENN STATE
 - Integration of MEMS S&A into CCAT

High Voltage Fireset

Slapper (Bridge) Detonator

MEMS F/S&A Technology at Indian Head

- MEMS Simulation Based Design Capability
- Micro-systems Packaging: chip-to-chip, explosive and electronics packaging & integration
- High voltage slapper based initiator development
- MEMS-Explosive Certified Cleanroom
- Conducted MEMS Reliability, Safety and Field Test
- MEMS S&A Staff with 40+ years MEMS S&A development experience
- On-going assessments of Industry Sensors & Micro-systems

Slapper / Fireset Package

CCAT S&A

NAVY MEMS-Based F/S&A Technology Program

Canistered Countermeasure Anti-Torpedo (CCAT)

Status and Accomplishments

- CCAT MEMS S&A Prototype Development for Transition into CCAT E&MD
- MEMS S&A Technology Successfully Demonstrated in Aug 00 Sea-run Tests
- Baselined Overall S&A Components: Chip, Packaging, Initiation System, Sensor

Examples of Maturing MEMS S&A Technology

Successfully transitioned from LIGA to DRIE as process for CCAT S&A

LIGA S&A Chip

Accomplishments:

- Demonstrated: high displacement actuators and sliders, g-sensor, hydrostat, interrupter locks
- Demonstrated S&A chips for energy interruption and firing energy transfer
- ⇒ Environmental, reliability, and field (sea-run) tested

Thermal Actuator

G-Sensor

MEMS S&A Packaging

Provide robust packaging to meet shelf life and harsh environment requirements

Accomplishments

- Packaged MEMS S&A crucial for testing and demonstration
- Demonstrated MEMS S&A seal and bonding technologies
 - accelerated aging
 - thermal cycling

MEMS F/S&A TECHNOLOGY COTS / Modular Components

Typical Building Block Components for MEMS-Based Exploder

Inertial Measurement Rate Sensor

Impact Sensor

Flow Sensor: Pressure Differential

Undersea Fuze/Safety & Arming IMU for Close-In Ship Defensive

OBJECTIVE:

 Adapt a low cost, small volume Inertial Measurement Unit (IMU) for use in torpedo S&A devices

STATUS:

- Sea tests completed for using commercial IMU
- Conducted laboratory evaluation of numerous commercial IMUs
- Evaluated prototype with integrated commercial inertial sensor for torpedo application

• Evaluation included launch (air gun) simulations & land

IMU for CCAT Brief, Session V-B

MEMS Fuze/S&A Technology Spin-Off Applications

Flow Sensor:
Pressure Differential

S&A Chip Devices

Advanced Technology Ordnance Surveillance (ATOS)

- Advanced Concept Technology Demonstration FY 01 03
- Demonstrate operational utility of miniature radio frequency identification (RFID) tags coupled with micro-electromechanical sensor (MEMs) technology for use in tracking/monitoring critical items:

ATOS RFID System

ATOS-RFID System Integrated MEMS G-Sensor(s)

- Spring supported mass deflects into latch when G-Sensor undergoes a defined shock
- ATOS-RFID records shock event when G-Sensor latch closes switch

Latched Mass Wafer with multiple next generation g-sensor designs

Status of Sensor Development

- •Three design iterations completed to date
- •Baseline design successfully demonstrated
- •Next generation designs being fabricated
 - •Sensor types 1, 2, 4 directions, multidirectional & multi-level
 - •G levels 50 to 3000
 - •Additional features manual & electrical unlocking

Differential Pressure Flow Sensor Application and Commercialization

- Water and Air Flow Measurement
- Sensitivity demonstrated over 3 orders of magnitude of Re
- Licensed for marine, aeronautical, and automobile fields of use (Wickford Technologies)
- Completed commercialization Cooperative R&D effort
- Reduced to practical boating application in December 2001
- Conducted Sensor characterization testing in Tow Tank @ David Taylor Model Basin

Flow Sensor Packaged for Marine Application <2 cu-in

Technology Investment

Micro Detonics

OBJECTIVE:

◆ Develop the enabling explosive material & manufacturing technology to produce low-cost, reliable on chip MEMS detonator

APROACH:

- Investigate the use of thin film explosives that are formed in situ on silicon substrate (patent pending)
- ◆ Leverage MEMS industry manufacturing technology to develop batch process for high volume, low cost application

Indian Head NSWC MEMS Clean Room

Navy unique facility for Integrating MEMS, Electronics and Explosives

- Officially opened 29 Aug, 2001
- · Class 10000 Cleanroom
- Explosive and MEMS Assembly
- Characterization
- Testing
- 800 Sq. Ft inert processing space expansion to begin late in 02
- Planned Capital investment for Detonic Technology Development

Explosive Test Chamber

